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Abstract—The lipophilic side chain of the cyclic depsipeptide polyoxypeptin A (1) and B (2), strong apoptosis inducers, has been
synthesised as an ester of mixed methyl ketal 18. The key step is an asymmetric anti-aldol reaction of the designed
2-(N-2-methylbenzyl-N-2,4,6-trimethylbenzyl) amino-1-phenylpropyl ester 8 by means of a combination of LDA–Cp2ZrCl2 (0.3
equiv.) for enolation and transmetallation into the zirconium enolate for aldolization. By using a non-boron associated anti-aldol
reaction, 10 g of the key lactone 6 were synthesised in six steps from 8 and in 48% overall yield. © 2001 Published by Elsevier
Science Ltd.

Anticancer agents which induce apoptosis (pro-
grammed cell death) have a significant advantage over
those which induce necrosis (accidental death caused by
anticancer drugs). Thus, specific apoptosis inducers in
cells expressing oncogenes will be useful for treating
certain types of tumors. Polyoxypeptin A (1) and B (2),
natural products isolated from the culture of broth of
Streptomyces sp., induce apoptotic cell death in human
pancreatic adenocarcinoma AsPC-1 cells, an apoptosis-
resistant cell line, with ED50 values of 80 and 170
ng/mL, respectively. The relative and absolute stereo-

chemistries of polyoxypeptin A were unambiguously
determined through X-ray analysis and amino acids
analyses. Polyoxypeptin A and B are 19-membered
depsipeptides containing a lipophilic side chain, differ
in the structure of the piperazic acid moiety (Scheme
1).1

While the side chain of polyoxypeptin is similar to that
of antibiotic L-156602, the difference is the structure of
the alkyl substituent on the tetrahydropyran ring (R2=
Me in the structure 3).2 Because of its important biolog-

Scheme 1. The structure of polyoxypeptins and retrosynthesis of their lipophilic side chain 3.
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ical activity and unique structural features, we wanted
to synthesize a relatively large quantity of such a
molecule.3

The transformation of lactone 6 (R2=Me) into 3 (R2=
Me) with Seebach ester 5 has already been described by
Caldwell and co-workers,4 and it would be the shortest
method for creating the C1–C3 chiral centres of the side
chain. Therefore our strategy to access 3 (Scheme 1)
required an efficient method to synthesize lactone 6
(R2=Et). We realised that an asymmetric anti-aldol
reaction would be the most effective means for produc-
ing intermediate 7 (Scheme 1). We have recently devel-
oped a non-boron associated diastereselective anti-aldol
reaction using a readily synthesized chiral template,
2-(N-2-methylbenzyl-N-2,4,6-trimethylbenzyl) amino-1-
phenylpropyl ester.5 Herein we report a practical syn-
thesis of the lipophilic side chain of polyoxypeptins.

The synthesis of the key intermediate lactone 6 com-
menced with the known chiral carboxylic acid 106

(Scheme 2). For use in the diastereselective anti-aldol
reaction, alcohol 9 was converted into its ester 8 by
reaction with water-soluble carbodiimide and DMAP.
Selective generation of the E-enolate of 8 using LDA–
Cp2ZrCl2 (0.3 equiv.), followed by transmetallation
with Cp2ZrCl2 (2–3 equiv.) and aldolization with propi-
onaldehyde afforded anti-aldol 9 in 85–90% yield with
98% ds (determined by HPLC).5 Interestingly, the iso-
lated syn-aldol product was a 1.5:1 mixture of

diastereomers.7 From a practical point of view, the
anti-aldol reaction demonstrated herein has several
advantages: (1) the high degree of diastereofacial selec-
tivity; (2) all reagents for this chemistry are commer-
cially available; (3) easy purification of anti and syn
diastereomers; (4) quantitative recovery of the auxil-
iary. Because the structure of auxiliary 9 is similar to
Masamune ester 14, we applied the ester 8 to the
Masamune’s boron mediated aldol reaction condition.8

By using (c-Hex)2BOTf (2.4 equiv. as a monomer)9 and
3 equiv. of Et3N the aldol reaction of 8 with propi-
onaldehyde afforded, after oxidative work-up, exclu-
sively the anti-aldol product in 90% yield with greater
than 98% ds (Scheme 3). For the reasons described
above, we conducted the anti-aldol reaction of 8 on a
17 g scale using LDA–Cp2ZrCl2.

Protection of 11 as its TBS ether and reductive cleavage
of the ester moiety yielded 12 in 95% yield, and auxil-
iary 9 was recovered almost quantitatively. For C2
elongation, the primary alcohol of 12 was activated as
its tosylate.10 The cesium malonate anion addition to
tosylate 7 proceeded smoothly at 70°C in DMF within
5 h. The malonate adduct 13 could be transformed into
the lactone 6 from 13 through the intermediate lactone–
carboxylic acid in 90% yield by treatment with 80%
AcOH at 90°C for 24 h. Thus, we were able to obtain
more than 10 g of lactone 6 starting from 17 g of ester
8 in 43% overall yield.

Scheme 2. Synthesis of the lactone 6.
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Scheme 3. The anti-aldol reaction of 8 via Masamune’s condition.

Scheme 4.

In our hands, introduction of a three-carbon unit by
addition of lithium enolate of Seebach ester 5 to lactone
6 could not be reproducible. We have never obtained
the coupling product under the condition described by
Seebach.11 In order to facilitate the coupling reaction
with 5, lactone 6 was converted into the acyclic alde-
hyde 15 via standard procedures (Scheme 4). Coupling
of 15 with lithium enolate of 5 generated at −100 to
−95°C followed by Swern oxidation gave b-keto ester
16. Treatment of 16 with 49% HF in CH3CN afforded
hemiketal, which was then transformed into mixed
methyl ketal 17.12 The transesterification of 17 with
NaOMe in absolute MeOH yielded the stable com-
pound 18.13

In summary, the side chain of the polyoxypeptins has
been synthesized very efficiently as a mixed methyl
ketal ester 18 via a highly diastereoselective anti-aldol
reaction as a key step.
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